
A Quick Introduction to POV-Ray

POV-Ray, the “Persistence of Vision” ray tracer, is open source software available from

www.povray.org. This is good, highly functional software that you might enjoy playing with.

The User’s Guide is 150 pages and the Reference Manual another 350 pages. This is just a quick

introduction to get you started.

POV-Ray includes a text editor for creating a scene file. The production cycle requires you to

create a scene, then click on the Run button to render the scene. The scene description language

is similar to a programming language, with constructs to create objects, lights, cameras, and so

forth. You can either create these objects directly or store them in variables and instantiate them

when you need them. In the following I will do enough to show you some of the options.

Coordinate Systems. Before we can look at POV-Ray scences, you need to understand the

POV-Ray coordinate system. POV-Ray uses a left-handed object coordinate system, with the x-

axis horizontal and the y-axis vertical. If you think of a room, the x-axis is where the floor meets

the front wall, the y-axis is where the front and left-side walls meet, and the negative z-axis is

where the left side wall meets the floor. The positive z-axis extends into the next room.

First Example: Here is a simple POV-Ray scene. This has a yellow sphere of radius 3 at

position (0, 1, 5). The camera is at (0, 3, -3) looking at the center of the sphere. There is one

light in the scence, which is behind, above, and to the right of the viewer.

#include " colors.inc"

background { color Cyan }

camera {

 locat ion <0,3,-3>

 look_at <0, 1 , 5>

}

sphere {

 <0, 1 , 5>, 3

 t ext ure {

 pigment {color Yellow }

 }

}

light _source { <4, 10, -20> color Whit e}

http://www.povray.org/

Cameras. The most important parameters for the camera are the camera location and lookat

point. If you want to tilt the camera sideways, you can declare a sky vector, which is essentially

what we have called the up-vector. This defaults to <0, 1, 0>. If you think of a vertical vector

coming out of the top of the camera, the camera will be rotated until this vector lines up with the

sky vector. For example, the following will rotate the camera by 45 degrees around an axis

through its lens:

There are three parameters that are used to determine the size of the viewport. The up and right

vectors set the aspect ratio by creating a rectangular box. The default values of these are <0,1,0>

for up and <1.33,0,0> for right. The angle parameter, controls the horizontal aperture of vision;

this is exactly what we called Theta in our view pipeline. This angle should be specified after up

and right. For example, for a square window we might use

There are a number of other camera parameters, but the only ones you are likely to want to use

control the depth of field. There are three parameters to set for this. The focal_point is the point

that is most in focus. The camera aperture controls the region of focus – the smaller the aperture

the larger the area of focus of the lens. Finally, the blur_samples parameter controls the quality

of the focal blur imaging. The higher this is, the more accurate the rendering will be and the

longer it will take. For a quick view of the scene you might set blur_samples to 4 or 5; for a high

quality production view you might increase this to 20 or more, but be aware that this

significantly increases rendering time. Altogether, camera declaration with focal blur might be

camera {

 locat ion <0,3,-3>

 look_at <0, 1 , 5>

 sky <1, 1 , 0>

}

camera {

 locat ion <0,3,-3>

 look_at <0, 1 , 5>

 focal_point <0, 1 , 2>

 apert ure 0 .4

 blur_samples 20

}

camera {

 locat ion <0,3,-3>

 look_at <0, 1 , 5>

 up <0,1,0>

 right <1,0 ,0>

 angle 60

}

Lights. Point lights have only color and location:

Spotlights have some additional parameters. First, to create a spotlight you need to add the

spotlight directive to a light declaration. The point_at parameter controls the direction of the

spotlight; it is like the look_at point for a camera. The radius parameter is the aperture of the

fully illuminated portion of the cone. The falloff parameter is the angle of the umbra of the cone

– the region of partial illumination and partial shadow. You get sharp shadows by setting falloff

to 0, soft shadows by giving falloff a positive value. A typical spotlight declaration is

An area light source is rectangular. To make an area light you specify a location for its center,

axis vectors for its horizontal and vertical dimensions, and the number of rows and columns of

lights within it. For example, the following places 25 small lights within a 1x1 rectangle parallel

to the x-y plane

There are two additional flags for area lights. The adaptive n parameter tells the ray tracer that it

may use “adaptive sampling” and send fewer than 1 ray per small light when illuminating from

this source; n is the minimum number of rays to use for the entire area. The jitter flag tells the

ray tracer to randomize the placement of the small lights within this area rather than placing them

in a rectangular grid; this helps with aliasing artifacts. Altogether, a typical area light

declaration is

light _source {

 <4, 10, -20>

 color <1,1 ,1> / / or Whit e

}

light _source {

 <4, 10, -20>

 color Whit e

 spot light

 radius 15

 fallof f 20

 point _at <0,0 ,5>

}

light _source {

 <4, 10, -20>

 color Whit e

 area_ light

 <1,0 ,1>,<0,1,0>,5,5

}

Objects. Object declarations generally have a shape specification followed by a texture

specification. The sphere declaration in our first example was typical of this:

All of our objects have such a texture declation. In a subsequent section we will look in more

detail at the possible texture portions of this; for now we will just use simple diffuse texture like

this.

Here are the basic shapes:

 Spheres: These need a point for the center, and a value for the radius.

 Boxes: These need two points for corners across a diagonal (such as near lower left

corner and far upper right corner). For example

 box {

 <1, 2 , 3>,

 <4, 5 , 6>

 t ext ure {…}

 }

 Cones: These need 4 attributes: the center and radius of one end of the cone, and the

center and radius of the other end. Use 0.0 as a radius if you want to include the vertex of

the cone. For example

light _source {

 <4, 10, -20>

 color Whit e

 area_ light

 <1,0 ,1>,<0,1,0>,5,5

 adapt ive 1

 jit t er

}

sphere {

 <0, 1 , 5>, 3

 t ext ure {

 pigment {color Yellow }

 }

}

 cone {

 <0,0 ,0>, 1

 <4, 0 , 0>, 3

 t ext ure {…}

 }

 Cylinders: These need 3 attributes: the center of each end and the radius. By default

cylinders include their endcaps; if you don’t want the endcaps add the keyword open, as

in

 cylinder {

 <0,0 ,0>,

 <4,0 ,0>,

 1 .0

 open

 t ext ure {….}

 }

 Planes: The plane ax+by+cz=d is specified by the normal <a, b, c> and the constant d.

For example,

 plane {

 <0, 1 , 0>, -1

 t ext ure {…}

 }

is the horizontal plane y=-1.

 Polygons: A polygon is specified by a vertex count followed by a list of vertices. For

example

 polygon {

 4 ,

 <0,0 ,0>, <0,1 ,0>,<1,1,0>,<1,0,0>

 t ext ure {…}

 }

 Torus: A torus centered at the origin needs only two parameters: the major and minor

radii, as in

 t orus {

 4 , 1

 t ext ure { … }

 }

Positioning the torus away from the origin requires using transformations, which we

discuss below.

Textures and Colors. POV-Ray has an extensive set of options for surface materials. We will

only scratch the surface (so to speak) here. The base color or color patter on an object is set in a

field called “pigment”. The simplest texture is just a solid pigment:

 t ext ure { pigment {color <1,1 ,0>} }

makes a yellow surface. There are several predefined options for patterns:

 pigment {checker color1, color2}

makes a checkerboard pattern on the surface, using the (x,y,z) coordinates of the surface

 pigment {brick color1, color2}

makes a brick pattern, with color 1 as the outline or mortar color, color2 as the rectangular

“brick” color.

 pigment {hexagon color1, color2 , color3}

tiles the surface with hexagons in the three colors.

There are many other possible options for pigments. The only one we will discuss here is a

“texture map”. This has a series of textures that can be applied to changes in coordinates along

any of the three axes. The axis is specified by a gradient declaration: gradient x, gradient y ,

or gradient z. The textures are specified by entries [alpha t ex] , where alpha is a value

between 0 and 1 and tex is anything that can be specified in a texture declaration. If we put these

in order of increasing alpha, the first texture is displayed for values of the gradient between 0

and the first alpha. The last texture is displayed for values of the gradient between the last alpha

and 1. In between the textures are taken in pairs and the blended. For example, the following

will ramp between lines of white and black:

 t ext ure {

 gradient x

 t ext ure_map {

 [0 .0 pigment {color <0,0 ,0> }]

 [0 .5 pigment {color <1,1 ,1>}]

 [1 .0 pigment {color <0,0 ,0>}]

 }

 }

The following will make alternating red and blue stripes with no blending:

 t ext ure {

 gradient x

 t ext ure_map {

 [0 .5 pigment {color <1 ,0 ,0> }]

 [0 .5 pigment {color <0,0 ,1>}]

 }

 }

Here we have 4 stripes in colors red, yellow, blue and green:

 t ext ure {

 gradient x

 t ext ure_map {

 [0 .25 pigment {color <1,0 ,0> }]

 [0 .25 pigment {color <1,1 ,0> }]

 [0 .5 pigment {color <1,1 ,0> }]

 [0 .5 pigment {color <0,0 ,1> }]

 [0 .75 pigment {color <0,0 ,1> }]

 [0 .75 pigment {color <0,1 ,0> }]

 }

 }

Pigments give the basic color of the surface. The light reflection model used for an object is

determinted by the finish of the object’s texture. Here is a typical finish declaration as part of an

overall texture:

 t ext ure {

 pigment {color <1,1 ,0>}

 f inish {

 ambient 0 .1

 dif fuse 0 .8

 phong 0.3

 phong _size 30 / / phong exponent

 }

 }

The amounts given after each of the reflection types are the amounts of light reflected in this

way; the phong_size parameter is what we called the “phong exponent” in class.

There are a few other options. There is a brilliance parameter that can make surfaces appear

more metallic. The default value of brilliance is 1.0; adding the line brilliance amount to a

finish declaration will alter the brilliance to the given amount. For metallic surfaces use a

brilliance factor between 5 and 10. An alternative to the phong model is a more realistic model

called specular in POV-Ray. This sets a specular amount and also a value of an attribute called

roughness that affects the size of the specular highlight. Using this we might have finish

declaration

 f inish {

 dif fuse 0 .7

 specular 0 .3

 roughness 0.03

 }

Roughness values should be between 1.0 very rough, giving a large, dim highlight to 0.0005

(very smooth with a small, bright highlight).

If you look closely at a shiny metallic surface in a bright light, you may notice that the

hightlights are colored rather than white. With either the phong or the specular models for

specular reflection you can add the directive metallic. This causes the POV-Ray shader to alter

the colors of the highlights to those more resembling reflections from real metallic surfaces.

Both the Phong and specular portions of the finish refer only to highlights. If you want mirror

reflections, add the parameter reflection to the model in the form

 reflection amount

The amount is the portion of the light coming into the surface that is reflected in the form of a

specular mirror. In theory the ambient, diffuse, specular, and reflection amounts for a surface

sum to 1, though there is no requirement that this be the case.

If you want to make transparent items there are two steps to take. First, you need to create a

transparent color. Colors in POV-Ray are actually 5-tuples: <r,g,b,f,t>. The first three

dimensions are the usual RGB color scale, with all three values numbers between 0 and 1. The

fourth dimension, f, is for filtered transparency – the amount of light reaching the object that

passes through and is altered or filtered by the object’s color. The t-dimension is for transmitted

transparency – light that reaches the object and does not pick up the object’s color. For example,

a light green glass object might have color <0.9,1,0.9,0.9,0> -- light green, and filtering almost

all the light reaching it.

The other step to creating transparent items is to set the index of refraction. This is an interior

property in POV-Ray; there are a number of properties that can be set for the interior of an

object, just as the texture sets properties for the object’s exterior. The index of refraction

property is ior. The index of refraction of glass is 1.5. Thus, the following two lines set the

properties for a greenish glass:

 texture {pigment {color <0.9, 1, 0.9, 0.9, 0>}}
 interior {ior 1.5}

CSG. You may make intersections, unions, and differences of objects. In most situations you

will want to give texture properties to the combined object rather than the individual

components. For example

 int ersect ion {

 sphere {<0, 1 , 5>, 3}

 sphere {<3, 1 , 5>, 3}

 t ext ure { …. }

 }

The keyword intersection may be replaced by union or difference. You can intersect or union

any number of objects; differences need to be between two objects.

Variables. Scene descriptions can become very elaborate and difficult to follow. Comments

help, but it also helps to work some English into the scene description itself. One way to do this

is to use variables to attach names to parts of objects. The declaration of a variable is

 #declare <name> = <descript ion>;

For example,

 #declare Ball=sphere{ <1,2 ,3>, 4} ;

Note that the declaration is terminated by a semicolon; don’t leave this off. At the top level you

can use variables as replacements for their declarations without any adornment. In CSG

constructions you need to unpack the declaration with an object phrase, as in the following:

 #declare Ball = sphere {<0, 1 , 5>, 3} ;

 #declare Ball2 = sphere {<3, 1 , 5>,3} ;

 union {

 object {Ball}

 object {Ball2}

 t ext ure {…}

 }

Transformations. POV-Ray has the usual affine transformations: translation, rotation, and

scaling. All three take vector arguments:

 t ranslat e <a, b, c>

moves the current object by vector <a,b,c>

 scale <a, b, c>

scales by a on the x-axis, b on the y-axis and c on the z-axis.

 rot at e <a,b,c>

rotates by a degrees around the x-axis, b degrees around the y-axis, and c degrees around z.

POV-Ray defines the vectors x, y and z as <1,0,0>, <0,1,0> and <0,0,1>, so we could rotate by

30 degrees around the x-axis with either

 rot at e <30,0,0>

or

 rot at e 30*x

These transformations generally go inside object definitions. They apply to everything in the

object definition prior to the transformation. If you have a texture definition that is sensitive to

location, you probably want to put a translation or rotation statement after the texture declaration

because you usually want the transformation to apply to the texture as well.

 #declare Ball = sphere {<0, 1, 5>, 3};

 object {Ball texture {pigment {color Red}}}

 object {Ball texture {pigment {color Blue}}

 translate <0,-1,-5>

 scale<1,1.2,1.5>

 translate <3,0,5>

 }

Examples. We finish with three examples. The first shows a room with a table on top of which

is a ball and a silver cone. The only light is coming in from an unseen window (i.e, and area

light) to the left of the viewer.

#include " colors.inc"

include " t ext ures.inc"

background { color <0.6 ,0 .6 ,0> }

/ / light _source { <10, 7.8, 2> color <0.5 ,0 .5 ,0.5>}

light _source { <0.1 , 5 , 1> color <1,1,1 > area_light <0,0 ,1> <0,1,0> 10, 10}

camera {

 locat ion <5, 6 ,1 >

 look_at <6, 3 , 10>

 }

#declare Backwall = polygon {4 <0,0,10>, <0,8 ,10>, <15,8,10>,<15,0,10>} ;

#declare Front wall = polygon {4 <0,0,0>, <0,8 ,0>, <15,8,0>,<15,0,0>} ;

#declare Ceiling = polygon {4 <0,8,10>, <15,8,10>, <15,8,0>, <0,8 ,0>} ;

#declare Floor = polygon { 4 <0,0,10>, <15,0,10>,<15,0,0>, <0,0 ,0>} ;

#declare Tablet op = box {<4,4,4>,<7,4.1,6>} ;

#declare Tableleg = box {<-0.1 , 0 ,-0 .1>,<0.1,4,0 .1>} ;

#declare Mirror = polygon{4 <3,4,9.9>,<3,7,9.9>,<6,7,9.9>,<6,4,9 .9>} ;

union {

 object {Backwall}

 object {Front wall}

 t ext ure {pigment {color Yellow} }

 }

object {Ceiling

 t ext ure {pigment {color Whit e}

 f inish {ambient 0.3 dif fuse 0 .9}}

 }

object {Floor

 t ext ure {pigment {color Green}}

 }

object {Mirror

 t ext ure {pigment {color Silver} }

 f inish { dif fuse 0.2 specular 0.4 ref lect ion {1.0} } }

object {Tablet op t ext ure {DMFDarkOak scale <0.3,0 .3 ,0.3> rot at e 90*y}}

union {

 object {Tableleg t ranslat e <4.1,0 ,4 .1>}

 object {Tableleg t ranslat e <6.9,0 ,4 .1>}

 object {Tableleg t ranslat e <4.1,0 ,5 .9>}

 object {Tableleg t ranslat e <6.9,0 ,5 .9>}

 t ext ure {DMFDarkOak scale <0.3,0 .3 ,0.3>rot at e 90*x}

 }

sphere {<4.6,4.3,4.5>,0.2 t ext ure {pigment {color Red} f inish {dif fuse 0 .5 specular 0.8} } }

cone {<5.2,4 .1 ,5 .2>, 0 .3 , <5.2,4.6 ,5 .2> 0 t ext ure {pigment {color Silver}

 f inish {dif fuse 0 .5 specular 0.8 roughness 0.001 met allic} } }

The second example shows a Greek temple. The floor is an octagon; on top of this there are

columns supporting a dome. A stone texture is applied to the entire temple.

#include " colors.inc"

include " st ones.inc"

background { color Cyan }

camera {

 locat ion <1,10, -40>

 look_at <1,12, 0>

}

light _source { <0, 15, 0> color <0.2,0.2 ,0 .2>}

light _source { <20, 40, -10> color <1,1 ,1> area_light <0,2,0>, <0,0 ,2>,5,5}

#declare Vx = 20*cos(radians(22.5)) ;

#declare Vz = 20*sin(radians(22.5)) ;

#declare Box = box {<-Vx, 0 , -Vz> <Vx, 1, Vz>} ;

#declare Oct agon =

 union {object {Box}

 object {Box rot at e 45*y}

 object {Box rot at e -45*y}

 object {Box rot at e 90*y}

 } ;

#declare Base =

 union {

 object {Oct agon}

 object {Oct agon scale <0.9,1,0.9> t ranslat e <0,1,0>}

 object {Oct agon scale <0.81,1,0 .81> t ranslat e <0,2,0>}

 } ;

#declare Column =

 union {

 cylinder {

 <0,3,0>, <0,18,0>, 0 .7 }

 box {<-1,3 ,-1> <1,4,1>}

 t orus {0 .7 ,0 .3 t ranslat e <0,4,0> }

 box {<-1,17,-1> <1,18,1>}

 t orus {0 .7 ,0 .3 t ranslat e <0,17,0>}

 t ranslat e <14.5,0 ,0> rot at e 22.5*y

 } ;

#declare Dome =

 union {

 t orus {15, 0.7}

 int ersect ion {

 dif ference {

 sphere {<0,0,0> 15 }

 sphere {<0,0,0> 14.5}

 }

 box {<-30,0,-30> <30,16,30>}

 }

 scale <1,0.7 ,1>

 t ranslat e <0,18.2,0>

 } ;

#declare Temple =

 union {

 object {Base}

 object {Column}

 object {Column rot at e 45*y}

 object {Column rot at e 90* y}

 object {Column rot at e 135*y}

 object {Column rot at e 180*y}

 object {Column rot at e 225*y}

 object {Column rot at e 270*y}

 object {Column rot at e 315*y}

 object {Dome}

 }

object {Temple t ext ure {T_St one12

 }

 f inish {ambient 0.1 dif fuse 0.8 specular 0.3 roughness 0.5}

 }

object {plane {<0,1,0> 0 t ext ure {

 pigment {color Green}

 }

 }

 }

The final example shows three cylinders on top of a yellow plane. In the background are red and

blue cylinders. In the foreground is a green hollow cylinder (the difference between two

cylinders) with a high degree of transparency.

#include " colors.inc"

camera {

 locat ion <5,3,-8>

 look_at <5,3,0>

 }

light _source {<7, 30, -20> color Whit e }

plane {<0,1,0> 0 t ext ure {pigment {color Yellow} } }

cylinder {<5,0,6> <5,5,6> 1 t ext ure {pigment {color Blue}} }

cylinder {<3,0,6> <3,5,6> 1 t ext ure {pigment {color Red}} }

dif ference {

 cylinder {<4.5,0,1><4.5,3,1> 1 }

 cylinder {<4.5,0.1,1><4.5,3,1> 0.9 }

 t ext ure {pigment {color <0.9,1,0.9,0.9,0>}} int erior { ior 1.5} }

